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Introduction 
Modern agriculture increasingly relies on data-driven methods to monitor crops and forecast 
yields. Reliable yield prediction before harvest provides early warning for food security and 
supports decisions on food import/export; it also helps agribusiness in setting crop pricing, 
insurance, and stock planning  (mdpi.com). Remote sensing and machine learning now enable 
crop monitoring at scale, but understanding the physiological indicators behind the data is 
crucial. 

Two key indicators of crop function are evapotranspiration (ET) and gross primary 
productivity (GPP). ET and GPP link directly to plant water use and carbon uptake, 
respectively, making them powerful proxies for crop health and vigor. By tracking ET and GPP, 
engineers and data scientists can infer soil moisture conditions, plant stress levels, and growth 
rates – information essential for managing inputs and predicting yields. 

This paper provides a technical overview of ET and GPP in the context of crop modeling and 
precision agriculture, focusing on California’s high-value berry crops (strawberries, 
raspberries) and almonds. We review definitions and measurement techniques for ET and 
GPP, illustrate how these metrics feed into models for crop health and yield, and discuss 
practical applications (from irrigation scheduling to disease detection). Case studies in California 
almonds and berries demonstrate real-world uses, and we explore how ET/GPP monitoring 
connects to emerging trends in regenerative agriculture and carbon farming. The aim is a 
comprehensive yet accessible guide for engineers and data scientists to leverage ET and GPP 
in agricultural analytics. 
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Evapotranspiration (ET) and Its Role in Agriculture 
Definition and Components: Evapotranspiration (ET) is the combination of two processes by 
which water leaves the land surface: evaporation from soil or wet surfaces and transpiration 
from plant leaves. In essence, ET represents the total water use of a crop field. Evaporation is 
the direct loss of moisture from soil and plant residue, while transpiration is the water vapor flux 
through plant stomata during photosynthesis. Together, these processes consume significant 
water – for example, agriculture accounts for about 80% of water used in California 
(news.ucsb.edu), and ET is the mechanism behind that consumption. ET is often expressed in 
depth units (mm or inches), representing the equivalent depth of water lost. It varies with 
weather (hot, dry, windy conditions drive higher ET) and crop characteristics (leaf area, growth 
stage). Importantly, ET has two forms in practice: potential ET (the water loss if water is not 
limiting) and actual ET (water loss given the actual soil moisture and plant conditions). If a crop 
is well-watered and unstressed, actual ET approaches the atmospheric demand (potential ET); 
under water stress, actual ET falls below potential due to stomatal closure. 

Indicator of Water Use and Crop Stress: ET is a direct indicator of crop water use and can 
reveal soil moisture status and stress. A healthy, well-watered crop will transpire at a high rate 
(assuming sufficient evaporative demand), whereas a water-stressed or diseased crop will 
reduce transpiration. In fact, under non-optimal conditions such as pests, disease, or nutrient 
deficits, crops develop less leaf area and partially close stomata, reducing ET below the 
expected norm  fao.org. Thus, measuring ET can flag stress: if a field’s ET is significantly below 
the theoretical ET for a well-watered crop under current weather, it may indicate drought stress, 
pest infestation, or other growth-limiting factors. Conversely, an adequately watered crop in 
peak growth will exhibit high ET, reflecting strong evaporative cooling and water throughput. 
Because ET integrates soil and plant water status, farmers use it to guide irrigation – replacing 
the water that was “lost” to ET to keep the soil moisture in an optimal range. ET also correlates 
with biomass production up to a point (more transpiration can mean more carbon intake), a 
concept used in some yield models (discussed in Section 4). 

ET Calculation and Equations: In agronomy, a common approach is to calculate crop 
evapotranspiration (ET<sub>c</sub>) by scaling a reference evaporation rate to the specific 
crop. The basic equation is: 

ETc =ETo×Kc  

where ETo is the reference evapotranspiration (the ET from a reference crop, usually a 
well-watered grass, under the given weather) and Kc is the crop coefficient that adjusts for crop 
type and growth stage  almonds.com. Reference ET (ETo) encapsulates climate factors 
(sunlight, temperature, humidity, wind), and is often computed via the Penman-Monteith 
equation, a physics-based formula. The FAO-56 Penman–Monteith equation for daily reference 
ET (for a grass reference) is: 
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ETo =Δ+γ(1+0.34u2 )0.408Δ(Rn −G)+γT+273900 u2 (es −ea ) 

where RnR_nRn  is net radiation (MJ m<sup>-2</sup> day<sup>-1</sup>), GGG is soil heat 
flux, TTT is mean air temperature (°C), u2u_2u2  is wind speed at 2 m, es−eae_s-e_aes −ea  is 
the vapor pressure deficit, Δ\DeltaΔ is the slope of the saturation vapor pressure curve, and 
γ\gammaγ is the psychrometric constant  rpubs.com. Equation (1) essentially balances energy 
and aerodynamic factors to estimate how much water could evaporate/transpire. Once ETo is 
known (from weather data or networks like California’s CIMIS), it is multiplied by Kc to get 
ET<sub>c</sub> for a specific crop and growth stage (Kc values are tabulated from 
experiments). For instance, in almonds, Kc is low (~0.4) during dormant winter and up to ~1.1 in 
mid-summer when the canopy is full  almonds.com. If ETo on a hot July day is 8 mm, an almond 
orchard with Kc 1.1 would use ~8.8 mm of water that day as ET<sub>c</sub>. 

Measurement Techniques for ET: Directly measuring ET can be challenging, but several 
techniques exist. Lysimeters physically measure water loss by weighing a soil block with plants 
– essentially detecting the weight change as water evapotranspires. This yields very accurate 
ET data on a small scale. Eddy covariance flux towers offer a high-tech approach: they 
measure vertical wind and humidity fluctuations to directly compute the vapor flux from a field  
en.wikipedia.org, en.wikipedia.org. Eddy covariance systems provide continuous ET 
measurements (along with CO<sub>2</sub> flux for GPP) at ecosystem scale (footprint of 
~1–10 ha), and are used in research and to validate remote sensing. Satellite Remote Sensing 
is another key method: using observations of land surface temperature, reflectance, and 
meteorological data, one can model ET over large areas. Many remote-sensing ET models 
implement an energy balance approach, where the satellite-derived surface temperature and 
albedo are used to estimate how much of the Sun’s energy is going into evaporation (latent 
heat) versus heating the air (sensible heat). Well-known models like METRIC (Mapping 
Evapotranspiration at high Resolution with Internalized Calibration) and SEBAL use this 
approach. These models, combined with thermal imagery (e.g. from Landsat or MODIS 
satellites), can map ET for every field. For example, the METRIC model uses surface 
temperature differences to solve for ET and has been used to estimate crop water consumption 
and even infer yield, as discussed later  acsess.onlinelibrary.wiley.com. Simpler remote 
approaches use vegetation indices (like NDVI) as a proxy for Kc, essentially scaling reference 
ET by greenness fraction – useful when high-resolution thermal data are not available. 
Regardless of method, measuring or estimating ET in agriculture is crucial for irrigation 
management and drought monitoring. It directly ties the physical climate to the biological 
response of crops, making ET a foundational variable in agro-hydrological models and on-farm 
decision support. 

https://rpubs.com/julianaarbelaez/evapotranspiration#:~:text=CZ%20rpubs.com%20%20Penman,34%20U%29
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Gross Primary Productivity (GPP) and CO₂ Flux 
Measurements 
 
Definition and Link to Photosynthesis: Gross Primary Productivity (GPP) is the total amount 
of carbon (as CO₂) that plants assimilate through photosynthesis per unit area and time. In 
simpler terms, GPP is the rate of photosynthetic carbon fixation by all green plants in an 
ecosystem (here, a crop field). It is typically expressed in units like grams of carbon per square 
meter per day (g C m⁻² d⁻¹). GPP is “gross” because it represents all CO₂ taken in by 
photosynthesis, without subtracting the CO₂ lost by respiration. Some fraction of the carbon 
fixed is later respired by plants (for growth and maintenance); the remainder after respiration is 
net primary production (NPP), which contributes to plant biomass (yields, roots, etc.). In context 
of crop health, GPP is an excellent indicator of growth vigor – a high GPP means the crop 
canopy is actively photosynthesizing and growing, while a low GPP suggests slow growth or 
stress. Over a season, GPP is directly related to biomass accumulation and yield potential, 
since carbon from CO₂ ends up as plant matter (fruits, grains, etc.). This makes GPP a valuable 
metric for yield forecasting models and for assessing the effects of management (e.g., if a 
fertilizer boosts photosynthesis, GPP will reflect that increase). 

Measuring GPP with CO₂ Flux Towers 

Gross carbon flux cannot be measured directly by simple instruments; instead, researchers 
measure the net exchange of CO₂ between the crop and atmosphere and then infer GPP. The 
standard tool is an eddy covariance flux tower equipped with fast CO₂ sensors and 
anemometers. The tower measures Net Ecosystem Exchange (NEE) of CO₂, which is the net 
balance of CO₂ going in and out of the ecosystem. By convention, if we take the atmosphere’s 
perspective, NEE > 0 means CO₂ release to the atmosphere (net respiration) and NEE < 0 
means net CO₂ uptake (net photosynthesis). GPP and respiration are partitioned from NEE by 
measuring CO₂ flux under various conditions (e.g., nighttime NEE represents respiration since 
photosynthesis is zero in the dark, allowing estimation of total respiration). The relationship can 
be stated as: 

∗∗NEE=Reco−GPP∗∗,**NEE = R_{eco} - GPP**,∗∗NEE=Reco −GPP∗∗, 

where RecoR_{eco}Reco  is ecosystem respiration (CO₂ released by plants + microbes)  
pmc.ncbi.nlm.nih.gov. Rearranged, 

∗∗GPP=Reco−NEE∗∗.**GPP = R_{eco} - NEE**.∗∗GPP=Reco −NEE∗∗. 

If we use the sign convention that NEE is positive when the ecosystem loses CO₂ (source), then 
in daylight when plants uptake CO₂, NEE is negative and subtracting it indeed adds a positive 
GPP. In practice, flux tower software applies models to partition NEE into GPP and 

https://pmc.ncbi.nlm.nih.gov/articles/PMC7496462/#:~:text=%28NEE%29%20of%20CO_,not%20account%20for%20the%20multiple


RecoR_{eco}Reco . For instance, using nighttime data to model respiration at a given 
temperature and then applying that respiration rate during daytime to estimate how much of the 
daytime NEE was offset by GPP. Through such methods, flux towers provide continuous GPP 
estimates for research. This has yielded insights like daily GPP curves, seasonal totals, and 
responses of GPP to stress. For example, flux tower studies in California specialty crops have 
measured how coastal fog can enhance strawberry farm GPP and water-use efficiency by 
reducing plant stress on hot days  agupubs.onlinelibrary.wiley.com. Flux measurements are also 
key to validating satellite-driven GPP models globally  pmc.ncbi.nlm.nih.gov. 

Estimating GPP via Remote Sensing 

Because flux towers are sparse, remote sensing approaches are used to estimate GPP at field 
to regional scales. The most common approach is the Light-Use Efficiency (LUE) model. In 
this framework, GPP is modeled as a function of the amount of light absorbed by vegetation and 
the efficiency with which plants convert light to biomass. A simple formulation is: 

 𝐺𝑃𝑃 =  𝑃𝐴𝑅 × 𝑓
𝑃𝐴𝑅 

× ϵ

where PAR is the incident photosynthetically active radiation (the light available for 
photosynthesis), fPARf_{\text{PAR}}fPAR  is the fraction of PAR actually absorbed by the plant 
canopy (this relates to leaf area and greenness), and ε\varepsilonε (epsilon) is the light-use 
efficiency – the amount of carbon fixed per unit of light absorbed  deepblue.lib.umich.edu. This 
equation  deepblue.lib.umich.edu encapsulates that a dense green canopy (high 
fPARf_{\text{PAR}}fPAR ) under bright light will have high potential GPP, but the actual GPP also 
depends on ε\varepsilonε which is reduced by stresses (extreme heat, nutrient limitations, etc.). 
Satellite data can provide PAR (from solar models) and estimate fPARf_{\text{PAR}}fPAR  via 
vegetation indices like NDVI or via products like FPAR from MODIS. The maximum 
ε\varepsilonε for a crop type is often known from literature (e.g., well-watered crops might have 
a max ε≈2−4\varepsilon \approx 2-4ε≈2−4 gC per MJ of light), and then a reduction factor is 
applied based on conditions (temperature, drought, etc.). For instance, NASA’s MOD17 GPP 
product uses a variant of this model, with ε\varepsilonε adjusted for temperature and 
vapor-pressure deficit  deepblue.lib.umich.edu (Running et al., 2004). Another emerging remote 
metric related to GPP is solar-induced chlorophyll fluorescence (SIF) – a faint glow emitted 
by chlorophyll during photosynthesis. SIF measured from satellites can correlate with GPP, 
offering a direct physical proxy for photosynthetic activity. However, SIF data is still 
coarse-resolution and mostly research-oriented. 

Interpretation in Agricultural Context 

 In crops, GPP closely tracks crop growth stages. During early growth, GPP rises as leaf area 
expands. A peak GPP indicates a full canopy with intense photosynthesis (often just before 
flowering or during early fruiting for many crops). Later in the season, GPP may plateau or 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JG006193#:~:text=,tower%20measurements
https://pmc.ncbi.nlm.nih.gov/articles/PMC7496462/#:~:text=difference%20between%20the%20total%20CO_,process%20knowledge%20by%20introducing%20a
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/177270/jgrg22516_am.pdf?sequence=2&isAllowed=y#:~:text=GPP%20%3D%20PAR%20x%20fPAR,of%20GPP%20to%20estimate%20using
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/177270/jgrg22516_am.pdf?sequence=2&isAllowed=y#:~:text=GPP%20%3D%20PAR%20x%20fPAR,of%20GPP%20to%20estimate%20using
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/177270/jgrg22516_am.pdf?sequence=2&isAllowed=y#:~:text=GPP%20%3D%20PAR%20x%20fPAR,of%20GPP%20to%20estimate%20using


decline (e.g., leaves age or are removed, or the plant shifts energy to fruits). Monitoring GPP 
over time thus gives a picture of the crop’s performance: if GPP is lower than expected for a 
given stage, the crop might be underperforming due to stress (water, nutrients, disease). 
Because GPP is tied to carbon uptake, and yield in many crops is proportional to total biomass 
or total assimilated carbon, GPP data can improve yield estimates. For example, an 
unexpectedly sharp drop in GPP during what should be peak growth could signal a problem that 
might reduce final yields (such as a pest attack in a raspberry field reducing leaf area). On the 
other hand, consistently high GPP through the season often correlates with good yields, 
assuming that carbon is being partitioned to the harvested organs (berries or nuts). In Section 4 
and 5, we will see how GPP data is used alongside ET in modeling and management for better 
yield prediction and real-time decision support. 

Modeling Crop Health and Yield Using ET and GPP 
In agricultural analytics, combining biophysical data (like ET and GPP) with remote sensing and 
machine learning models has opened new possibilities for predicting crop outcomes. Crop 
health (the current status of growth and stress) and yield forecasting (predicting the final 
produce) can be significantly improved by incorporating ET and GPP, as these variables 
encapsulate water and carbon dynamics fundamental to crop performance. 

Integrating ET and GPP in Models 

Traditional yield prediction models often rely on weather data and vegetation indices (e.g., 
NDVI) as proxies for crop condition. By adding ET and GPP data, either from ground sensors or 
derived from satellites, models gain more direct information about the plant’s physiological state. 
For example, actual evapotranspiration (ET<sub>a</sub>) is directly related to crop water 
consumption and can indicate if the crop experienced water stress during the season. Gross 
primary productivity provides insight into the cumulative photosynthetic activity which drives 
biomass production. Researchers have demonstrated the value of these inputs. In one study, 
Khan et al. (2019) proposed using satellite-based ET and simple crop growth algorithms to 
estimate crop biomass and yield, as an alternative to complex crop simulation models  
acsess.onlinelibrary.wiley.com. By feeding remote-sensed ET<sub>a</sub> from the METRIC 
model into a growth model (derived from CropSyst), they achieved good yield estimations 
across 30 m pixels for multiple years  acsess.onlinelibrary.wiley.com. This approach leverages 
the strong linkage between water use and growth – essentially, if a certain amount of water was 
transpired, a proportional amount of biomass should have been produced (up to water-limited 
yield potential). Such models provided yield estimates matching observed yields at several test 
sites, confirming that ET data can anchor yield predictions in physical reality. 

GPP integration is similarly powerful. A satellite-driven crop model in Australia, for instance, 
used GPP to estimate the carbon uptake of wheat fields and then translated that to grain yield  

https://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj2018.04.0248#:~:text=difficulty%20in%20characterizing%20the%20spatial,in%20eastern%20Washington%20State%20with
https://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj2018.04.0248#:~:text=state%20of%20the%20system,The%20proposed%20approach%20was%20able


researchgate.net. This model (“satellite-driven crop model… uses GPP to estimate carbon and 
then wheat yield”  researchgate.net) essentially treats remote-sensing GPP as input into a yield 
formation model. The rationale is straightforward: if you know how much carbon the crop 
accumulated (via GPP), you can predict yield by allocating a fraction of that carbon to the 
harvestable product (taking into account harvest index, etc.). These approaches have shown 
success in regional yield forecasting, especially when ground-based GPP data (from flux 
towers) are used to calibrate the satellite models. In fact, calibrating models with local flux 
measurements can markedly improve accuracy – one global study found that optimizing the 
light-use efficiency in a GPP model using flux tower data improved the R² by ~15% and reduced 
errors by one-third  agupubs.onlinelibrary.wiley.com. 

Yield Prediction and Machine Learning 

In the era of AI, machine learning models (like random forests, neural networks, and nowadays 
transformer-based models) are being applied to crop yield prediction. These models can ingest 
a variety of features: weather time series, remote sensing indices, soil data, etc. ET and GPP 
are increasingly used as features in these models. For example, a yield prediction system might 
include cumulative ET up to mid-season, average daily GPP during key growth stages, and 
stress indices derived from ET/GPP anomalies. Because ET and GPP capture different 
dimensions (water and carbon) of crop status, they often add predictive power beyond using 
vegetation indices alone. Ground truth data from flux towers or in-field sensors can also be 
fused with satellite data to create hybrid models. A notable advantage is seen when matching 
satellite observations to the exact footprint of flux towers: one study showed that using 
high-resolution Landsat data aligned to flux tower footprints improved the performance of a GPP 
estimation model by 14% for croplands  mdpi.com. This underscores that using ground-based 
ET/GPP sensors in tandem with satellite data can sharpen model accuracy, by providing 
calibration points and capturing fine-scale variability that pure satellite models might miss. 

To illustrate, consider yield modeling for an almond orchard: A regression model that tried to 
predict annual yield from total annual ET alone found only a weak correlation (R² ~0.08), 
meaning ET by itself didn’t explain much of the yield variability  digitalcommons.calpoly.edu. 
Almond yield depends on many factors beyond water use (such as pollination success, heat 
waves, etc.), so a single-variable model is insufficient. However, when the model included 
additional factors like regional rainfall, winter chill hours, and location, the yield-ET relationship 
strengthened markedly (R² ~0.63)  digitalcommons.calpoly.edu. This indicates ET is indeed a 
significant piece of the puzzle but works best in a multi-variable context. If GPP or NDVI were 
added as predictors, we might capture effects of canopy health and nutrition, further improving 
predictions. In practice, modern yield forecasting frameworks combine metrics – for example, 
cumulative GPP (or NDVI integral) to represent total growth, ET-based indices to represent 
water sufficiency, and perhaps weather extremes as separate features. Data-driven models 
trained on historical yield outcomes can then learn the optimal weighting of these features. 
Studies have shown that such integrated models can forecast yields with higher fidelity, giving 

https://www.researchgate.net/publication/327223036_Towards_a_national_remote-sensing-based_model_for_predicting_field-scale_crop_yield#:~:text=...%20www.researchgate.net%20%20This%20satellite,It
https://www.researchgate.net/publication/327223036_Towards_a_national_remote-sensing-based_model_for_predicting_field-scale_crop_yield#:~:text=...%20www.researchgate.net%20%20This%20satellite,It
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JG004142#:~:text=Improving%20Global%20Gross%20Primary%20Productivity,
https://www.mdpi.com/2072-4292/14/23/6062#:~:text=footprint%20was%20able%20to%20improve,of%20remote%20sensing%20data%20with
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farmers and supply chain managers earlier and more reliable estimates of final production  
mdpi.com. 

Ground-Based vs. Satellite-Only Models 

The question often arises: how much do in-situ sensors (like flux towers or soil-moisture/ET 
stations) help compared to using satellite data alone? While satellites provide uniform coverage, 
ground sensors deliver higher precision and can capture sudden changes (e.g., an irrigation 
failure or disease outbreak) sooner. Integrating ground data tends to improve model accuracy. 
We saw an example with flux towers improving GPP estimates  mdpi.com. Another benefit is 
temporal resolution – satellites might pass weekly, whereas an on-site sensor logs continuously. 
If a heat wave caused acute stress for 3 days affecting yield, a tower measuring a sharp drop in 
GPP and ET could flag that, whereas a satellite might miss the event if not imaging on those 
days. On the flip side, ground sensors cover limited area and are costly to deploy widely. A 
practical compromise is emerging: use satellite models to get wall-to-wall coverage, but use a 
sparse network of ground sensors for calibration and validation. For instance, an almond 
grower cooperative might have flux towers or sap-flow sensors in a few representative orchards 
to fine-tune the regional satellite-based ET and GPP estimates. This synergy can reduce bias in 
satellite products (which might have cloud-related gaps or modeling uncertainties). Indeed, 
many regional water and carbon modeling efforts (like the OpenET project for 
evapotranspiration, or FLUXCOM for carbon fluxes) use machine learning trained on flux tower 
data to upscale ET and GPP to larger areas  agupubs.onlinelibrary.wiley.com. The result is 
improved accuracy that approaches what ground instruments would read, but across every field. 

In summary, ET and GPP serve as cornerstone inputs for advanced crop models. ET informs 
the water balance and stress status, GPP reflects the growth and productivity. By merging these 
with remote sensing and AI, we achieve a more complete representation of crop health, leading 
to better yield forecasts and the ability to diagnose limiting factors. The next section will 
translate these modeling capabilities into practical applications that growers and agronomists 
can use in precision agriculture. 

Applications for Growers: Precision Agriculture 
Integrating ET and GPP data into farm management can improve decision-making in several 
areas of precision agriculture. Below we highlight key applications for growers of water-intensive 
and high-value crops like almonds and berries in California: 

● Irrigation Management: Perhaps the most direct application of ET is in scheduling 
irrigation. In drought-prone regions like California, giving crops exactly the water they 
need (and not much more) is critical for both yield and water conservation. ET-based 
irrigation scheduling uses the principle of “replace what the crop used.” For example, if 

https://www.mdpi.com/2072-4292/15/8/2014#:~:text=harvest%20provides%20an%20early%20warning,7%2C8%2C9%5D.%20Identifying%20areas%20with
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the orchard’s ET<sub>c</sub> was 5 mm today, an equivalent amount of water is 
supplied via irrigation (adjusted for any rainfall) to refill the soil. Farmers often obtain 
daily reference ET (ETo) values from local weather networks (such as CIMIS in 
California) and multiply by the crop coefficient for their crop/stage to get daily water use  
almonds.com. This approach accounts for weather variability – hotter days get more 
water, cooler days less – and avoids rigid calendar schedules. By using ET data (from 
weather stations or newer satellite tools like OpenET), growers can optimize irrigation 
timing and amounts. This has real benefits: studies have shown ET-based scheduling 
can improve water use efficiency significantly (8–40% improvement) without harming 
yields  acsess.onlinelibrary.wiley.com. In practice, many almond growers use smartphone 
apps or irrigation calculators that input ET and soil properties to recommend irrigation 
durations. On a seasonal scale, ET monitoring helps ensure the crop is not 
under-watered during critical growth periods (avoiding yield loss from stress) and not 
over-watered in other periods (avoiding wasted water and leaching. Precision irrigation 
guided by ET thus maintains crop health while saving water – a key sustainability win in 
arid farming. When water allocations are limited (as under California’s Sustainable 
Groundwater Management Act), ET data provides a transparent way to quantify water 
use per field  news.ucsb.edu, enabling equitable water trading or deficit irrigation 
strategies. For drip-irrigated strawberries, ET monitoring can prevent both drought stress 
(which would reduce berry size) and waterlogging (which can cause root disease), 
thereby improving fruit quality and resource efficiency. 
 

● Fertilization Optimization: Gross primary productivity is closely tied to nutrient status, 
especially nitrogen (N). Nitrogen is a critical element in chlorophyll and enzymes like 
Rubisco, so a nitrogen-deficient crop will typically have reduced photosynthesis and thus 
lower GPP. By monitoring GPP (or related indices like NDVI which indicate leaf 
chlorophyll), farmers can gauge whether crops are reaching their photosynthetic 
potential or if nutrients might be limiting. For instance, if one section of a raspberry field 
consistently shows lower GPP or NDVI despite adequate water, it could signal a need for 
additional fertilizer in that zone. Precision agriculture systems use such data to do 
variable-rate fertilization – applying more N where the crop vigor is low and likely 
limited by N, and less where the crop is already lush. Research in precision nutrient 
management has shown that plant spectral properties reflect crop N status  
ars.usda.gov, enabling in-season adjustments. GPP can serve as an integrative indicator 
– if GPP picks up after a fertilization, it indicates improved nutrient uptake and 
photosynthesis; if not, perhaps another issue persists. In strawberries, for example, 
balancing N is tricky: too little reduces yield, too much can cause excessive leaf growth 
at the expense of fruit and can lead to pest issues. Continuous GPP or NDVI monitoring 
provides feedback on how the crop is responding to feeding. Over time, growers can use 
these data to fine-tune fertilizer schedules and amounts, improving nutrient use 
efficiency (more crop per unit of fertilizer) and reducing runoff of excess nutrients. This 
not only cuts costs but also benefits the environment by minimizing nitrate leaching into 
groundwater. In summary, pairing GPP data with precision fertigation systems allows 
“feeding” the crop only as much as it can productively use, matching nutrient supply to 
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the crop’s physiological demand. 
 

● Disease and Stress Early Warning: One of the promises of using ET and GPP in 
precision ag is early detection of stress, including disease, pest attacks, or other 
problems. Often, by the time a human scout notices visual symptoms (wilting, 
discoloration), the crop has already been stressed for days or weeks. ET and GPP can 
reveal subtler, earlier changes. For example, a plant pathogen that attacks roots will 
impair water uptake – the crop’s transpiration (ET) may drop measurably as stomata 
close due to the root stress, even before leaves visibly wilt. If a section of an almond 
orchard has a sudden unexplained dip in ET (given similar weather) compared to the 
rest, it could indicate localized root disease or irrigation blockage. Similarly, foliar 
diseases or insect defoliation reduce green leaf area and photosynthesis, causing GPP 
to fall. Detecting these anomalies in ET/GPP data can trigger an alert for growers to 
inspect that field zone. In practice, remote sensing platforms or IoT sensor networks can 
be set to look for deviations: e.g., a thermal infrared drone flight might map canopy 
temperature, from which ET can be inferred (hotter canopy = lower transpiration). If one 
block of strawberries shows hotter canopies, it might be under attack by spider mites 
(which cause stomatal closure) or have a soilborne disease – prompting targeted 
intervention. As a concrete example, the FAO reports that pests and diseases can 
significantly reduce a crop’s evapotranspiration below its potential  fao.org. Thus, tracking 
ET against expected values (ET<sub>c</sub>) provides a quantitative measure of crop 
health. GPP data from flux towers or high-resolution satellites could similarly be used to 
flag areas where “photosynthesis per unit leaf” is lower than it should be. Modern 
analytical tools can integrate weather, ET, and GPP to differentiate causes of stress. For 
instance, if GPP drops but ET stays high, perhaps leaves are still transpiring but not 
fixing carbon well (maybe due to nutrient deficiency affecting photosynthesis); if both 
GPP and ET drop, it might be a stomatal closure issue (water stress or vascular 
disease). Early warnings allow growers to respond faster – applying fungicides or 
insecticides only where needed, fixing irrigation issues, or other remedies – minimizing 
crop damage and economic loss. In high-value crops like berries, catching a disease 
outbreak even a few days early can make a big difference in saving the crop. 
 

● Harvest Planning: Beyond in-season management, real-time physiological indicators 
can assist in predicting optimal harvest timing and yields. By monitoring GPP trends, 
a grower can assess when the crop has reached peak production and is starting to 
plateau or decline (signaling maturation). For annual crops, the point at which GPP no 
longer increases (or begins to drop) often corresponds to the onset of maturation or seed 
fill – an indicator that harvest time is approaching. For example, in processing tomatoes 
(an annual crop), the NDVI (proxy for GPP) starts declining as fruits ripen, which is used 
to schedule harvest  arable.com. In a similar vein, for strawberries which are continuously 
harvested over a season, tracking GPP could help predict flushes of production (e.g., 
after a period of high GPP, more fruit might ripen a couple of weeks later). If real-time 
GPP or NDVI data shows the crop’s growth has peaked, managers might start 
organizing harvest crews for the expected peak yield window. This is crucial for labor 

https://www.fao.org/4/x0490e/x0490e04.htm#:~:text=optimal%20conditions%20such%20as%20the,c
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planning in crops like berries that require hand-picking. Additionally, having an estimate 
of cumulative GPP by mid-season can improve yield forecasting – if GPP is far above 
average due to a great season, the grower can anticipate a bumper yield and prepare 
storage/market channels; if below average, they might contract for less sales. Optimal 
harvest time can also be inferred by the plant’s physiological maturity. Remote sensing 
indices can indicate when a majority of the crop has reached physiological maturity  
doktar.com. For instance, a plateau and slight decline of NDVI/GPP in an almond 
orchard late summer might indicate the nuts have fully developed and the trees are 
beginning to withdraw resources from leaves, suggesting that shaking the almonds at 
that point would maximize yield and quality. In precision viticulture (grapes) and 
potentially berries, indices like PRI or fluorescence, combined with GPP, have been 
studied to pick the best harvest date for peak flavor which correlates with certain 
stress/assimilation dynamics. Overall, using ET and GPP data for harvest planning leads 
to data-informed decisions on when to harvest for maximum yield and quality, and 
provides yield predictions that inform downstream logistics. 
 

In summary, ET and GPP are not just theoretical metrics; they have practical on-farm 
applications that can save water, increase input efficiency, reduce losses, and improve timing of 
operations. Farmers and agronomists are beginning to access these through user-friendly 
dashboards: e.g., some irrigation companies offer ET-based scheduling tools, and some satellite 
services provide field-level GPP or biomass estimates. As these become more integrated into 
farm management systems (potentially augmented by AI that analyzes the data), we can expect 
more precise and adaptive farming – a necessity in the face of resource constraints and climate 
variability. 

Case Studies: California Almonds & Berry Crops 
To ground the discussion, we consider how ET and GPP are being applied specifically in 
California’s almond orchards and strawberry/raspberry fields. These crops present different 
challenges – perennial trees vs. short-cycle berries – but in both cases ET and GPP-based 
approaches have driven improvements in management. 

● Almonds (Water Stress Reduction using ET-based Irrigation): California almonds 
have gained a reputation for high water use, as a mature almond orchard in the Central 
Valley can use on the order of 50–60 inches (~1300–1500 mm) of water per year 
through ET  almonds.com, almonds.com. With recurring droughts and regulation of 
groundwater, almond growers have turned to precision irrigation with ET data to reduce 
water stress and usage without sacrificing yield. The Almond Board of California actively 
promotes ET-based scheduling: understanding the changing water demand of almond 
trees via ET is the first step toward optimal irrigation  almonds.com. Practically, many 
almond growers use weekly ETo reports from CIMIS and adjust irrigation run times 

https://www.doktar.com/en/blog/digital-agtech/how-to-read-ndvi-maps-growth-stages-possible-color-indications/#:~:text=readings%20can%20help%20determine%20the,extremely%20low%20values%20at%20this
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according to crop coefficient curves for almonds. By ensuring the trees get just enough 
to match ET<sub>c</sub>, growers avoid both under-irrigation (which would cause tree 
stress, dropping yield and potentially harming next year’s flowering) and over-irrigation 
(which wastes water and can leach nutrients). For example, during the peak summer 
months, an almond orchard might use ~8–9 mm/day  almonds.com, and growers will 
replenish that via drip or micro-sprinklers daily or every few days. If a heatwave hits 
(spiking ETo), the ET data prompts increased irrigation to preempt stress. Conversely, 
after a cool spell or rain, ET drops and irrigation can be scaled back, saving water. The 
impact on yield comes through maintaining tree health: a well-watered almond tree can 
keep its stomata open, photosynthesize (high GPP), and fill kernels properly. Under 
deficit irrigation, trees may survive but kernel size and yield can diminish. Some growers 
employ Regulated Deficit Irrigation (RDI) at specific times (e.g., slightly stressing 
post-harvest or during certain stages) to save water – but even RDI strategies are 
guided by tracking ET deficits to ensure stress is controlled, not arbitrary. A case in Kern 
County showed that when drought cut water availability, farms that closely managed 
irrigation by ET data maintained better yields than those on fixed schedules, essentially 
doing “more crop per drop.” Another important use of ET in almonds is in irrigation 
system design and evaluation: by comparing seasonal ET<sub>c</sub> to total 
applied water, growers can calculate their irrigation efficiency and identify losses to 
runoff or deep percolation. With tools like OpenET (which provides satellite-based ET for 
fields  news.ucsb.edu), even growers without local weather stations can access ET 
estimates to guide their water management. The result across the industry has been 
improvements in water productivity. California’s almond yield (lbs of nuts per acre) has 
steadily risen in part due to better water and nutrient management – and ET data has 
been central to that. Using ET as a feedback metric, some growers have reported 
reducing their water use by 10–20% while keeping yields constant, through measures 
like eliminating one irrigation set if ET data shows the soil is still moist enough. In 
drought emergency years, ET monitoring helps to triage which orchards to water and 
which to let go dry (fallow) by quantifying water needs and yield trade-offs. In summary, 
almonds demonstrate how ET data can directly inform precision irrigation to reduce 
water stress. This not only secures yields but also has broader implications: conserved 
water can be used to sustain more orchards or left in aquifers, aiding regional water 
sustainability. 
 

● Strawberries & Raspberries (Disease Detection and Nutrient Management with 
GPP insights): Berry crops like strawberries and raspberries are high-value, short-cycle 
crops predominantly grown along California’s coast (Salinas, Watsonville, Santa Maria 
regions). They are typically fertigated (combined fertilization and irrigation through drip) 
and are susceptible to issues like soilborne diseases (e.g., verticillium wilt in 
strawberries), foliar diseases (mildews), and nutrient imbalances. Remote sensing of 
crop vigor has started to play a role in managing these issues. One example is using 
NDVI and GPP to compare different soil treatments after the phase-out of methyl 
bromide fumigant. USDA researchers evaluated if remote sensing could measure plant 
growth differences under alternative fumigation, and whether NDVI correlated with 

https://www.almonds.com/sites/default/files/irrigation_scheduling_using_et%5B1%5D.pdf#:~:text=Apr%200,97
https://news.ucsb.edu/2024/021398/small-changes-can-yield-big-savings-agricultural-water-use#:~:text=An%20evapotranspiration%20database%20called%20OpenET,she%20compared%20transpiration%20in%20fallowed


strawberry yield  ars.usda.gov. They found that NDVI (taken via aerial imagery and 
handheld sensors) did correlate well with plant size and yield, validating that remote 
measurements of productivity reflect on-ground performance. For a grower, this means 
they can use drone or satellite NDVI maps to identify weak areas in the field. If a certain 
zone has persistently lower NDVI/GPP, it could indicate soil disease or nematode issues 
reducing root efficiency. Those areas might benefit from targeted soil treatments or crop 
rotation. On a more immediate timescale, anomalies in GPP can signal emerging 
problems: for instance, if a normally uniform raspberry field shows a patch with dropping 
GPP over a week, it might be an early infestation of spider mites or a nutrient deficiency. 
The grower can scout that patch sooner, perhaps preventing a larger outbreak. Berries 
are often grown on raised beds with plastic mulch, which can complicate remote sensing 
(soil background effects), but high-resolution imagery and careful calibration can 
overcome this  ars.usda.gov, ars.usda.gov. Once calibrated, the vegetation index or 
GPP data becomes a map of crop health. Some strawberry growers have begun using 
subscription services that provide such health maps every week. They overlay these with 
management zones to do variable-rate fertilization – e.g., if one part of the field shows 
lower vigor, maybe increase nitrogen there. Because strawberries have a long harvest 
season with multiple pickings, maintaining an even, healthy canopy is important for 
sustained yield. GPP data also ties into disease management: research is ongoing into 
using thermal cameras (for ET surrogates) to detect plants infected with diseases like 
Macrophomina or Phytophthora before they collapse. A diseased strawberry plant often 
has reduced transpiration, so it appears warmer in thermal imagery. Spotting a cluster of 
warmer plants amid a cooler well-watered field is a red flag to remove those plants or 
apply fungicide. Similarly for raspberries, water stress or cane diseases could be 
mapped. Another aspect is nutrient use: strawberries are heavy feeders, and residual 
soil nitrogen is a concern for water quality. By monitoring how effectively the crop is 
converting inputs into growth (via GPP), growers and advisors can tweak fertigation 
regimes. For example, if adding an extra fertigation leads to no uptick in GPP, it may 
indicate diminishing returns (perhaps luxury consumption of N without yield gain), so 
they might reduce rates to avoid waste. In contrast, if GPP is lagging and leaves show 
subtle yellowing, that cues a boost in nitrogen. These decisions can now be 
data-supported rather than purely visual or based on fixed schedules. Precision ag trials 
in berries have shown the potential to reduce fertilizer use by using sensor data to guide 
applications, with no loss in yield – aligning with both economic and environmental 
goals. Lastly, yield forecasting for berries can benefit from GPP monitoring: since berries 
are picked continuously, knowing the likely “peak flush” of production helps in labor 
planning. Some farms use models that input weather and NDVI to predict when the main 
harvest flush will occur. High GPP periods generally precede high harvest periods (fruits 
mature following high carbon gain periods). Thus, berry growers can marry GPP trends 
with phenology models to schedule labor more efficiently, ensuring enough pickers 
during peak and not overscheduling during dips. In all, strawberries and raspberries 
illustrate how high-frequency, high-resolution tracking of crop physiological metrics can 
inform everything from pest management to fertilization to harvest logistics, directly 
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improving profit margins and sustainability. 
 

These case studies highlight that while ET and GPP might seem abstract, they have tangible 
benefits in crop management across different systems. Almonds show the water side – how ET 
data leads to water savings and stress avoidance; berries show the carbon/growth side – how 
vigor data leads to targeted interventions for health and inputs. Together they underscore a 
broader point: data-driven agriculture using physiological indicators can adapt to each crop’s 
needs. California’s innovative growers, faced with scarce water and labor and strict 
environmental regulations, are increasingly tapping into such tools (often in collaboration with 
universities and agtech companies). As sensor costs decrease and analytics improve, these 
approaches are likely to become standard practice. 

Regenerative & Carbon Farming Connections 
Beyond immediate farm management, monitoring ET and GPP has implications for long-term 
sustainability efforts such as regenerative agriculture and participation in carbon markets. 
These practices aim to improve soil health, increase carbon sequestration in farmlands, and 
reduce agriculture’s environmental footprint. ET and GPP are key variables in understanding 
and verifying these improvements. 

Supporting Carbon Sequestration Efforts: One principle of regenerative agriculture is to 
increase soil organic carbon (through practices like cover cropping, reduced tillage, and 
compost application). The idea is that more carbon in soil not only helps climate mitigation but 
also improves soil structure and water holding capacity. How do we know if we are sequestering 
carbon? GPP is directly related – it measures how much CO₂ the plants are drawing from the 
atmosphere. Not all of that carbon ends up stored in soil (a lot leaves as harvested product or 
respired back), but a portion (root exudates, crop residues) can become soil organic matter. By 
tracking GPP over years, one can gauge if an agricultural system’s productivity is improving 
(perhaps due to better soil health). An increase in GPP could mean more carbon inputs to soil. 
Coupling GPP with measurements of ecosystem respiration (from flux data) can even allow 
estimation of Net Ecosystem Carbon Balance. For example, a cover-cropped, no-till system 
might show high GPP and relatively lower off-season respiration, indicating net carbon storage 
in the system. ET monitoring also plays a role: healthier soils often infiltrate and store water 
better, which might lead to slightly higher transpiration (plants can use water that would 
otherwise run off). So a regenerative field might show a shift from evaporation to transpiration – 
meaning more water goes through plants (productive) rather than evaporating unproductively. 
This can be captured by metrics like ecosystem water use efficiency (eWUE = GPP/ET)  
mdpi.com. A higher GPP/ET ratio suggests more carbon gain per unit water – often an indicator 
of a well-functioning, resilient system. In an almond study, researchers quantified GPP and 
eWUE over multiple years and found values comparable to natural ecosystems  mdpi.com, 
mdpi.com, highlighting that well-managed orchards can be efficient in carbon and water use. By 
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parameterizing such indices, we can track progress in sustainability. For instance, a farmer 
adopting regenerative practices might monitor eWUE as a KPI (Key Performance Indicator): if it 
improves over time, it’s a sign that the soil-plant system is becoming more efficient (perhaps due 
to better soil structure or rooting depth from cover crops). In the context of climate change 
adaptation, maintaining productivity (GPP) while reducing water use (ET) is vital – something 
regenerative methods claim to do via enhanced soil moisture retention. Remote sensing offers a 
scalable way to monitor these outcomes across fields and seasons. 

Carbon Credit Markets and MRV: With the rise of voluntary carbon markets, some farmers are 
exploring selling carbon credits for practices that increase soil carbon or reduce emissions. A 
big challenge in these projects is MRV (Measurement, Reporting, and Verification) – 
essentially proving that carbon is being sequestered. Traditionally, MRV relies on soil sampling 
(to measure soil carbon changes) and modeling. However, remote sensing is increasingly part 
of the MRV toolkit to ensure continuous, cost-effective monitoring  catona.com. ET and GPP 
data feed into these models. Companies like Boomitra, for example, combine on-ground soil 
samples with satellite imagery to estimate soil carbon at scale  boomitra.com. While the satellites 
don’t measure carbon directly, they pick up on vegetation signals and moisture (via optical and 
radar data) that correlate with soil organic matter. GPP trends can indicate increased biomass 
input to the soil, and ET (especially when partitioned into transpiration vs evaporation) can 
indicate changes in plant cover. A field that consistently maintains cover (through cover crops or 
perennial grasses) will have a different ET signature (more year-round transpiration, less 
bare-soil evaporation) than a conventionally fallow field. Such differences can be detected with 
remote sensing and used as evidence of regenerative practice implementation. Additionally, 
climate-smart practices often aim to reduce inputs like irrigation or synthetic fertilizer. ET data 
can verify reductions in water withdrawals (useful if selling water savings or reporting for 
sustainability metrics), and GPP data can show maintained yield despite reduced inputs 
(indicating success of practices). Some carbon programs also consider avoided emissions – 
e.g., if better water management (guided by ET) leads to less pumping, that’s energy saved and 
carbon emissions reduced. 

Water and Carbon Nexus 

There is a strong nexus between water management and carbon sequestration. For example, if 
a grower improves soil carbon, the soil can hold more water, potentially reducing the need for 
irrigation (a co-benefit). Conversely, deficit irrigation might stress plants and reduce GPP, 
limiting carbon inputs to soil. Finding the right balance is part of regenerative ag. By monitoring 
ET and GPP, farmers can ensure that water-saving measures don’t overly compromise carbon 
gain (and yield). If a certain deficit strategy causes GPP to plummet, they might dial it back to 
keep the system sequestering carbon and producing yield. These data streams thus enable an 
adaptive management approach to carbon farming: adjust practices and immediately see the 
effect on plant water use and growth. Over multiple seasons, a rich dataset of ET, GPP, yield, 
and soil carbon can be built, helping to refine practices and also provide documentation to 
stakeholders (be it certifiers, consumers, or policymakers) that the farm is improving in 
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sustainability. For instance, an almond grower in a carbon program could show that after 5 years 
of cover cropping, their orchard’s peak GPP is higher, ET is used more effectively, and soil 
carbon samples confirm a gain – a holistic proof of regenerative success. 

Participation in Carbon Credit Markets 

When it comes to selling carbon credits, credibility is paramount. Projects need to demonstrate 
actual carbon removal. Remote sensing, including vegetation indices, is being used by 
verification bodies to ensure that fields under a carbon contract actually have the promised 
cover crops or management changes throughout the project period  catona.com, catona.com. If 
a farmer claims no-till with continuous cover, but satellite data shows the field was bare and 
tilled, that’s a red flag. On the flip side, strong signals of year-round greenness (NDVI), stable or 
increasing GPP, and appropriate ET are positive indicators aligning with increased carbon input. 
Some advanced approaches even aim to estimate NPP (Net Primary Production) from remote 
data and infer how much might be going into the soil. While there is still uncertainty, combining 
multiple data sources (satellite, ground sensors, models) is creating robust systems. For 
example, a “triangulation” approach uses satellite GPP/NDVI, flux tower proxies, and soil model 
simulations together to estimate soil carbon change – reducing reliance on any single method  
catona.com, catona.com. Such methods may soon complement or partially replace intensive 
soil sampling, making carbon projects cheaper to monitor and thus more accessible to farmers. 

In essence, ET and GPP monitoring form a bridge between farm management and 
ecosystem services accounting. They allow quantifying benefits like water efficiency gains 
and carbon sequestration in real time. This is important not just for external credits but for the 
farm’s own resilience. A regenerative farm would like to know: are my practices actually 
improving the system? By watching ET and GPP, they get immediate feedback. If soil health is 
improving, they might see higher spring GPP (due to better soil moisture retention) or less drop 
in GPP during a minor drought (due to resilience). Likewise, they might see ET patterns 
smoothing out (less extreme runoff events, more steady use). These are data-driven 
confirmations of qualitative benefits often claimed by regenerative agriculture. 

Finally, it’s worth noting that government and industry initiatives on sustainability are beginning 
to incorporate such metrics. Water footprinting for crops uses ET data to compute how much 
water a crop “consumed” per yield. Carbon footprinting uses NPP/GPP data to see how much 
CO₂ was taken up vs. emitted. With increasing transparency demands, a large almond operation 
might report annually on its water-use efficiency (yield per ET) and perhaps on net carbon 
balance. Thus, the same ET and GPP measurements that help day-to-day farming also feed 
into macro-level sustainability assessments and potential reward systems (like carbon 
credits or ecosystem service payments). 
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Conclusion & Future Directions 
ET and GPP have emerged as critical metrics for linking ground-level crop physiology with 
remote sensing and data analytics in agriculture. As reviewed, ET encapsulates the water 
dimension of crop health – indicating usage and stress – while GPP encapsulates the carbon 
and growth dimension – indicating productivity and vigor. Using these together provides a 360° 
view of crop status. In yield prediction models, incorporating ET and GPP has demonstrably 
improved accuracy, since these metrics carry direct information about plant function that generic 
indices alone may miss. On the farm, applications range from precise irrigation scheduling that 
saves water, to nutrient management that maximizes photosynthesis, to early stress detection 
and optimized harvest timing. Case studies in California almonds and berry crops illustrate 
real-world benefits: data-driven adjustments in practices leading to water savings, maintained 
yields, and more informed management under challenging conditions like drought and disease 
pressure. Furthermore, monitoring ET and GPP supports broader goals in sustainable 
agriculture – improving water use efficiency and carbon sequestration, which are key to climate 
resilience and participation in carbon markets. 

Looking ahead, emerging technologies will further integrate ET, GPP, and artificial intelligence 
into user-friendly tools. For instance, NASA’s ECOSTRESS mission is providing 
high-temporal-resolution thermal imagery that can measure field-level ET and stress every few 
days, even at times of day when water stress peaks. Combined with high-resolution optical 
satellites (Planet, Sentinel-2) that can monitor canopy development and even chlorophyll 
fluorescence, we are moving toward a future where real-time ET and GPP maps are available 
on-demand for every farm. This data firehose will be harnessed by AI models – for example, an 
AI could ingest continuous satellite ET/GPP data, weather forecasts, and sensor data to predict, 
in real time, an impending yield reduction or pest outbreak, and recommend mitigation steps. 
Some researchers are developing digital twins of farms where ET and GPP are key state 
variables updated from remote sensing, enabling scenario testing (e.g., “what if I irrigate 20% 
less next week, how will GPP and yield respond?”). On the ground, cheaper sensors like sap 
flow meters (for transpiration) and leaf gas exchange sensors (for photosynthesis proxy) could 
allow even more granular ground-truthing and control in high-value crops like greenhouses or 
vertical farms. 

Integration is a big theme. Currently, many growers get bits of information from different 
sources: a weather station for ET, maybe a satellite NDVI image from a service, perhaps a 
separate handheld tool for chlorophyll or a pressure chamber for water stress. We can expect 
consolidated platforms that integrate these – indeed, the OpenET project’s next-generation 
“FARMS” tool is aiming to put high-res ET data directly in farmers’ hands with user-friendly 
interfaces nasa.gov, nasa.gov. Similar efforts are likely for GPP or crop growth metrics, possibly 
in the form of biomass or yield forecasting apps. These platforms, enhanced with machine 
learning, will likely provide recommendations (not just raw data) – for example, telling a 
strawberry grower: “This field’s transpiration is 15% below norm and GPP has dropped 10% in 
the last 3 days; possible stress detected – inspect for pests or irrigate if soil is dry.” In almonds, 
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an app might combine ET and GPP to compute WUE and advise if it’s time to adjust irrigation or 
fertilization to stay on track for target yield. 

Gaps and research needs remain. For instance, translating GPP improvements to actual yield 
depends on partitioning of carbon – in some cases, a high GPP might all go to vegetative 
growth and not increase fruit yield; understanding crop-specific growth dynamics is important to 
fine-tune models. ET-based irrigation works well on average, but extreme heatwaves or 
microclimate variations might require additional sensing (like soil moisture probes) to avoid 
underestimating plant stress – multi-sensor fusion is a continued research area. There is also a 
need for better crop-specific calibration of remote sensing models: berries and specialty 
crops are less studied than big commodities like wheat or corn. Ensuring that satellite 
algorithms estimate ET and GPP accurately for strawberries under plastic mulch, or almonds in 
different canopy architectures, needs targeted research and field experiments. Another 
challenge is scaling and computing – processing daily satellite data for thousands of fields and 
running AI models is computationally intensive, calling for cloud computing solutions and 
possibly edge computing on IoT devices. Privacy and data ownership concerns also arise as 
farms generate more data. 

From a commercial implementation standpoint, demonstrating the return on investment (ROI) to 
growers is key to adoption. The technologies discussed promise a lot, but they must be 
cost-effective and show clear benefits. As more case studies and pilot projects document yield 
gains, water savings, or input reductions from using ET/GPP-driven systems, confidence will 
build. Industry stakeholders like irrigation companies, agtech startups, and farm management 
services are increasingly incorporating these scientific advances. For example, several irrigation 
controller products now have an “ET mode” that adjusts watering times based on weather/ET. 
We anticipate more “GPP mode” or “crop health mode” features in the future – perhaps 
fertilization controllers that use satellite GPP feedback to adjust dosing. 

In conclusion, ET and GPP serve as vital signs of crop ecosystems – akin to pulse and 
respiration for the human body. By monitoring these vital signs with remote sensing and 
analytics, we gain a powerful diagnostic and prognostic tool for agriculture. The convergence of 
remote sensing, in situ sensing, and AI is enabling a shift from reactive farming to predictive, 
adaptive farming. California’s almond orchards and berry fields are at the forefront of this 
transformation out of necessity, but the lessons and technologies are applicable globally. 
Continued collaboration between agronomists, engineers, and data scientists will be needed to 
refine these tools and ensure they are robust under real-world farming conditions. The payoff is 
resilient, resource-efficient crop production – growing more food with less water, lower inputs, 
and a smaller environmental footprint, all while equipping farmers with better information to 
make decisions. ET and GPP, once the domain of eco-physiologists, have thus become 
practical metrics driving the next wave of precision agriculture and sustainable farming. 
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